Confident AI vs LangSmith: Head-to-Head Comparison - Confident AI

Confident AI vs LangSmith: Head-to-Head Comparison

Presenting...

The open-source LLM evaluation framework.

Star on GitHub
featured Image

Choosing the right LLM observability (and evals) platform often comes down to trade-offs.

On paper, Confident AI and LangSmith both cover the essentials – LLM tracing, online evals, prompt experimentation, and more – but their strengths show up in different places.

In this buyer's guide, we'll cover these differences in more detail, comparing features and functionalities, pricing, ROIs, and the best fit for different AI use cases.

How is Confident AI Different?

1. It's a platform built with an evals-first mindset

Although both Confident AI and LangSmith offer evals, Confident AI treats evals as a first-class citizen, making AI quality the primary focus for its LLM observability features rather than treating observability as standard analytics achievable by another tool such as Datadog. This means:

  • Regression testing is built into test runs to catch breaking changes before users do

  • Experimentation is possible on any AI app, not just prompts

  • 50+ industry standard metrics for AI agents, RAG, chatbots, powered by DeepEval

  • Multi-turn simulations included for testing conversational agents

  • Red teaming for security testing AI apps

  • Online metrics on all traces, spans, and threads (conversations) logged

In other words, Confident AI covers the AI quality layer of your stack, instead of just AI visibility.

2. All-in-one platform with no vendor lock-in

Confident AI is the ultimate LLM observability platform because it puts all your organization's AI quality needs in one place, while offering seamless integrations with any framework you are using (or might use in the future).

To set the record straight - LangSmith technically integrates with other frameworks like Pydantic AI, but the experience may vary dramatically. If one team builds with LangChain while another uses Pydantic AI for a different use case, they'll get vastly different levels of LLM observability depth and feature support. This creates inconsistent evaluation standards across your organization, making it impossible to establish unified AI quality governance.

Furthermore, several features on LangSmith are only usable when integrated with other tools in their ecosystem such as LangServe.

3. Serves cross-disciplinary teams, not just developers

Although both Confident AI and LangSmith serve developers well and require developers for initial setup, Confident AI was built also for non-technical teams such as PMs, QAs, and subject matter experts (SMEs) in mind.

PMs can run an end-to-end iteration cycle since Confident AI can ping your AI app anywhere through HTTP requests via AI connections, QAs run regression tests and manage datasets for pre-deployment workflows with ease, and SMEs annotate traces and evaluation runs.

UX/UI is also more intuitive, and the best way to verify this is to try it out yourself from our generous free-tier.

Features and Functionalities

Confident AI and LangSmith offer a similar suite of features, but LangSmith lacks evaluation depth and things like ease of use for non-technical teams.

Confident AI

LangSmith

LLM Observability Trace AI agents, track latency and cost, and more

Yes, supported
Yes, supported

LLM Metrics Metrics for quality assurance, LLM-as-a-judge, and custom metrics

Yes, supported
Yes, supported

Simulations For multi-turn conversational agents

Yes, supported
No, not supported

AI analytics Determine user activity, retention, most active use cases

Yes, supported

Limited

Dataset management Supports datasets for both single and multi-turn use cases

Yes, supported

Single-turn only

Regression testing Side-by-side performance comparison of LLM outputs

Yes, supported
No, not supported

Prompt versioning Manage single-text and message-prompts

Yes, supported
Yes, supported

Human annotation Annotate monitored data, align annotation with evals, and API support

Yes, supported
Yes, supported

API support Centralized API to manage evaluations

Yes, supported
Yes, supported

Red teaming Safety and security testing

Yes, supported
No, not supported

LLM Observability

Both Confident AI and LangSmith offer LLM observability. Confident AI has a more generous free-tier and more flexible annotation options.

Confident AI

LangSmith

Free tier Based on monthly usage

Unlimited seats, 10k traces, 1 month data retention

1 seat, 5k traces, 14-day data retention

Core Features

LangChain/Graph Integration One-line code integration

Yes, supported
Yes, supported

OTEL Instrumentation OTEL integration and context propagation for distributed tracing

Yes, supported
Yes, supported

Graph Visualization A tree view of AI agent execution for debugging

Yes, supported
No, not supported

Metadata logging Log any custom metadata per trace

Yes, supported
Yes, supported

Trace sampling Sample the proportion of traces logged

Yes, supported
Yes, supported

Custom span types Customize span classification for better analysis on the UI

Yes, supported
Yes, supported

Dashboarding View trace-related data in graphs and charts

Yes, supported

Fully functional, but graphs are disjointed over the platform

Conversation tracing Group traces in the same session as a thread

Yes, supported
Yes, supported

User feedback Allow users to leave feedback via APIs or on the platform

Yes, supported
Yes, supported

Export traces Via API or bulk export

Yes, supported
Yes, supported

Annotation Annotate traces, spans, and threads

Yes, supported

Only on traces

LLM Evals

Both Confident AI and LangSmith offer evals, but Confident AI's evals is noticeably better in both functionality and UX/UI, for both technical and non-technical teams.

Confident AI's metrics are powered by DeepEval - this means implementation is open-source and used by some of the world's leading AI companies such as OpenAI, Google, and Microsoft.

Confident AI

LangSmith

Free tier Based on monthly usage

Unlimited offline evals, online evals free for first 14-days

Supports online and offline evals (usage not transparent)

Core Features

Experimentation on multi-prompt AI apps 100% no-code eval workflows on multiple versions of your AI app

Yes, supported
No, not supported

Eval alignment Statistics for how well LLM metrics align with human annotation

Yes, supported
Yes, supported

Eval on AI connections Reach any AI app through HTTP requests for experimentation

Yes, supported
No, not supported

Online and offline evals Run metrics on both production and development traces

Yes, supported
Yes, supported

Multi-turn simulations Simulate user conversations with AI conversational agents

Yes, supported
No, not supported

Multi-turn dataset format Scenario-based datasets instead of input-output pairs

Yes, supported
No, not supported

Native multi-modal support Support images in datasets and metrics

Yes, supported

Not on datasets

Testing reports & regression testing Allow regression testing and stakeholder sharable testing reports

Yes, supported
No, not supported

LLM Metrics Supports LLM-as-a-judge metrics for AI agents, RAG, multi-turn, and custom ones.

50+ metrics for all use cases, single and multi-turn, research-backed custom metrics, powered by DeepEval

Offer custom metrics, heavy setup required however. Does not support equation-based scoring.

Non-technical friendly test case format Upload CSVs as datasets that does not assume any technical knowledge

Yes, supported
No, not supported

AI app & Prompt Arena Compare different versions of prompts or AI apps side-by-side

Yes, supported

Only for single prompts

Human Annotations

Both Confident AI and LangSmith offer human annotations, each with a different focus with Confident AI being more opinionated and supports annotations on more types of data.

Confident AI

LangSmith

Free tier Based on monthly usage

Unlimited annotations and annotation queues, forever data retention

Supports annotations and annotation queues (usage not transparent)

Core Features

Reviewer annotations Annotate on the platform

Yes, supported
Yes, supported

Annotations via API Allow end users to send annotations

Yes, supported
Yes, supported

Custom annotation criteria Allow annotations to be of any criteria

Yes, supported
Yes, supported

Annotation on all data types Annotations on test cases (for development evals), traces, spans, and threads

Yes, supported

Only supported for traces

Custom scoring system Allow users to define how annotations are scored

Yes, either thumbs up/down or 5 star rating system

Yes, either continuous (0-1) or category-based

Curate dataset from annotations Use annotations to create new rows in datasets

Yes, supported

Only for single-turn

Export annotations Export via CSV or APIs

Yes, supported
Yes, supported

Annotation queues A focused view on annotating test cases, traces, spans, and threads

Yes, supported

Only for traces

Prompt Engineering

Both Confident AI and LangSmith offer similar capabilities for prompt versioning and management, with Confident AI offering more customizations in templating.

Confident AI

LangSmith

Free tier Based on monthly usage

1 prompt, unlimited versions

Supports prompts (usage not transparent)

Core Features

Text and message prompt format Strings and list of messages in OpenAI format

Yes, supported
Yes, supported

Custom prompt variables Support variables that can be interpolated at runtime

Yes, supported
Yes, supported

Advance conditional logic Support if-else statements, for-loops

Yes, supported via {% Jinja %} formats

No, not supported

Prompt versioning Manage different versions of the same prompt

Yes, supported
Yes, supported

Manage prompts in code Use, upload, and edit prompts via APIs

Yes, supported
Yes, supported

Label/tag prompt versions Identify prompts in human-friendly labels

Yes, supported
Yes, supported

Run prompts in playground Compare prompts side-by-side

Yes, supported
Yes, supported

Supports tools, output schemas, and models Version not just prompt content, but also tools, and model parameters such as provider and temperature

Yes, supported
Yes, supported

Log prompts to spans Find which prompt version was used in production

Yes, supported
No, not supported

AI Red Teaming

Confident AI offers red teaming for AI applications whereas LangSmith has no such offering. Red teaming allow you to automatically scan for any security and safety vulnerabilities in your AI in under 10 minutes.

Confident AI

LangSmith

Free tier Based on monthly usage

Red teaming on enterprise-only

Not supported

Core Features

LLM Vulnerabilities Library of prebuilt vulnerabilities such as bias, PII leakage, etc.

Yes, supported
No, not supported

Adversarial Attack Simulations Simulate single and multi-turn attacks to expose vulnerabilities

Yes, supported
No, not supported

Industry frameworks and guidelines OWASP Top 10, NIST AI, etc.

Yes, supported
No, not supported

Customizations Custom vulnerabilities, frameworks, and attacks

Yes, supported
No, not supported

Red team any AI app Reach AI apps through the internet to red team

Yes, supported
No, not supported

Purpose-specific red teaming Get use case tailored attacks based on AI purpose

Yes, supported
No, not supported

Risk assessments Generate risk assessments that contains things like CVSS scores

Yes, supported
No, not supported

Pricing

Both Confident AI and LangSmith offers generous free-tiers, and operates on a philosophy of try-first-before-deciding. This means free for most features, but limited to an individual seat for experimental purposes.

However these are the main differences:

Confident AI

Confident AI charge based on a combination of usage and user seats. Pricing is transparent with usage cost you can calculate in advance. Usage cost is not measured by tokens or disk storage, but rather things like trace count that you can easily anticipate in advance.

Confident AI:

  • Is 50% cheaper than LangSmith for individual users ($19.99 per seat)

  • Has more generous data retention policies (3 months vs 14 days on LangSmith)

  • Place no limits on the number of seats on cheaper plans (LangSmith confines you to 10 max seats)

  • For startups: Offers an affordable option for small teams needing enterprise features, and a sweet YC deal

  • For growth-stage companies: Offers custom pricing with flexible seats and unlimited projects

  • For enterprise: Offers custom pricing for those with enterprise standards and requirements

LangSmith

LangSmith charge too based on a combination of usage and user seats. Pricing is transparent but less flexible, with stricter limits for mid-market companies. Growth-stage companies that don't need enterprise but want more than 10 seats might find pricing restrictive.

LangSmith:

  • Requires you to go into an annual commitment for 10 seats and above

  • No middle-tier for grow-stage companies

  • Has more restrictive data retention limits

Security and Compliance

Both Confident AI and LangSmith are enterprise ready, with Confident AI being the less pricey option for many standard security features.

Confident AI

LangSmith

SOC II For customers with a security guy

Yes, supported
Yes, supported

HIPAA For customers in the healthcare domain

Yes, supported
Yes, supported

GDPR For customers with a focus in EU

Yes, supported
Yes, supported

2FA For users that want extra security

Yes, supported
No, not supported

Social Auth (e.g. Google) For users that don't want to remember their passwords

Yes, supported

Only for paid plans

Custom RBAC For organizations that need fine-grained data access

Team plan or above

Enterprise only

SSO For organizations that want to standardize authentication

Team plan or above

Enterprise only

InfoSec Review For customers with a security questionnaire

Team plan or above

Enterprise only

On-Prem Deployment For customers with strict data requirements

Enterprise only

Enterprise only

Why Confident AI is the best LangSmith Alternative

Although both are a feature-rich LLM observability platform, Confident AI is the best LangSmith because it centralizes all features related to AI quality (observability, evaluations, simulations, and red teaming) while offering UX/UI intuitive enough for non-technical teams to use.

This means that although both looks similar on paper, the reality is Confident AI unlocks more ROI by:

  • Allowing non-technical members to contribute to LLM observability and evals

  • Enabling simulations to save up to 3 hours of testing time for multi-turn use cases

  • Offering red teaming which is security testing for AI apps, something every organization ultimately needs in production

  • Being cheaper, while offering more

This means that if you want industry-standard evals in your observability stack, don't want to double-pay for simulation tools and red teaming tools, and want non-technical users to be able to also use Confident AI, you will find more value in Confident AI.

Migrating from LangSmith to Confident AI is extremely easy (integration guide here), and the best way to test out the difference is to try it yourself for free.

When LangSmith Might Be a Better Fit

LangSmith excels in specific scenarios where Confident AI may not be the optimal choice:

  • Deep LangChain Ecosystem Integration: If your entire AI stack is built exclusively on LangChain (using LangGraph, LangServe, LangChain agents), LangSmith offers tighter integration with framework-specific features. For teams who plan to stay 100% within the LangChain ecosystem, this creates a more seamless developer experience.

  • Simpler Needs, Smaller Scale: If you're a solo developer or 2-person team building a straightforward RAG application without multi-turn conversations, safety requirements, or cross-functional collaboration, LangSmith's narrower feature set may feel less overwhelming.

The bottom line: Both platforms solve real LLM observability problems. Choose LangSmith if you're building simple, LangChain-exclusive applications with a small technical team. Choose Confident AI if you need evaluation depth, cross-functional collaboration, or plan to scale beyond 10 engineers. The best way to decide? Try both on your actual use case.


Do you want to brainstorm how to evaluate your LLM (application)? Ask us anything in our discord. I might give you an "aha!" moment, who knows?

Got Red? Safeguard LLM Systems Today with Confident AI

The leading platform to red-team LLM applications for your organization, powered by DeepTeam.

More stories from us...